C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Spectroscopic Techniques

Subject Code: 5SC04STC1Branch: M.Sc. (Chemistry)Semester: 4Date: 22/04/2019Time: 02:30 To 05:30Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the following questions	(07)
	a.	What is called spectroscopy?	01
	b.	Define chromophore	01
	c.	Give the wavelength range for UV-Visible Spectroscopy.	01
	d.	What is called homoannular diene?	01
	e.	Give the relation of wavenumber and force constant for IR spectroscopy.	01
	f.	What do you mean by COSY?	01
	g.	Draw the ¹ H-NMR spectrum of 1, 1, 2-tribromomethane.	01
Q-2		Attempt all questions	(14)
	a.	Explain the sampling techniques in IR spectroscopy.	07
	b.	Explain the various shifts in UV-Visible spectroscopy.	07
		OR	
Q-2		Attempt all questions	(14)
	a.	Write a note on various factors affecting vibrational frequency.	07
	b.	Explain the various types of transitions in UV-Visible spectroscopy.	07
Q-3		Attempt all questions	(14)
	a.	Draw and Explain CW-NMR Instrumentation.	07
	b.	Explain the chemical shift in ¹ H-NMR spectroscopy.	07
		OR	

Q-3		Attempt all questions			(14)
	a.	Write a note on splitting of signal a	nd mechanism	n of splitting in ¹ H-NMR.	05
	b.	Explain the relaxation processes in	¹ H-NMR		05
	c.	Explain coupling constant (J).			04
		SEC	CTION – II		
Q-4		Attempt the following questions			(07)
	a.	Give the general chemical shift ran	ge for ¹ H-NM	R and ¹³ C-NMR spectroscopy.	01
	b.	What do you mean by molecular io	n peak?		01
	c.	Why ¹³ C- ¹³ C coupling is neglible o	r not observed	1?	01
	d.	Give two-two examples of nuclei h	aving nuclear	spin value $I = \frac{1}{2}$ and $I = 1.0$.	01
	e.	What is the range of chemical shift	in ¹³ C-NMR	for carbonyl carbon atom?	01
	f.	Define the term: Mass analyzer		-	01
	g.	What is called base peak in mass sp	pectrometry?		01
Q-5		Attempt all questions			(14)
	a.	Explain the principle of mass spect	rometry.		07
	b.	Discuss the instrumentation of mas	s spectrometry	у.	07
			OR	-	
Q-5		Attempt all questions			(14)
C	a.	Write a note on magnetic sector and	d quadrupole	mass analyzer.	07
	b.	Explain electron impact ionization	and chemical	ionization techniques.	07
Q-6		Attempt all questions			(14)
-	a.	Organic compound having molecul	lar formula C ₉	$H_{10}O_2$ exhibit the following	05
		spectral data. Deduced the structure	e of the compo	ounds.	
		IR (cm ⁻¹)	UV (λ, nm)	¹ H-NMR (δ , ppm)	
		3031 (v), 2941 (w), 1608,	274	2.35 (3H, singlet), 3.82 (3H,	
		1504 (w), 1060 (s) and 830 (s)		singlet), 7.30-7.85 (4H,	
				doublet)	
	b.				05

c.

04

OR

Q-6 Attempt all questions

a. Organic compound having molar mass 160.0 g/mole exhibit following spectral data. Deduced the structure of the compounds.

IR (cm^{-1})	UV (λ, nm)	¹ H-NMR (δ , ppm)
2857-2941, 1742, 1460, 1056, 1260.	212	7.5 (2H, singlet), 8.71 (6H, triplet), 5.84 (4H, Quartet)

b.

c.

04

Use the following tables for the calculation of ¹³C-NMR Chemical shift.

Table 5.2 : ¹³C Shifts for Selected Linear and Branched-Chain Alkanes (ppm from TMS)

	C—1	C—2	C—3	C—4	C—5
methane	- 2.6				
ethane	5.7				
propane	15.8	16.0	15.8		
butane	13.4	25.2	25.2	13.4	
pentane	13.9	22.8	34.7	22.8	13.9
hexane	14.1	23.1	32.2	32.2	23.1
heptane	14.1	23.2	32.6	29.7	32.6
isobutane	24.5	25.0			
isopentane	22.2	31.1	32.0	11.7	
neopentane	31.7	28.1			n an an Star Star Star Star Star Star Star Star Star Star
3-methylpentane	11.3	29.3	36.7	(18.6, 3—CH ₃)	
2.3-dimethylbutane	19.5 /	34.3			
2,2,3-trimethylbutanc	27.4	33.1	38.3	16.1	

(14)

05

with a Sub.	stituent (S)
γ α	γ S γ L. γ
~~~s	$\wedge$
β terminal	$\beta \beta$ internal

Table 5.3*	: Increments (ppm) for Substituents (S) On Replacement of H in Alkane	s
	with a Substituent (S)	

Substituent		x	1	3	γ
S	terminal	internal	terminal	internal	
F	+68	+63	+9	+6	-4
Cl	+31	+32	+11	+10	-4
Br	+20	+25	+11	+10	-3
1	6	+4	+11	+12	-1
CH ₃	+9	+6	+10	+8	-2
CH=CH2	+20		+6		-0.5
C≡CH	+4.5		+5.5		-3.5
СООН	+21	+16	+3	+2	<b>-2</b>
<b>COO</b> ⁻	+25	+20	+5	+3	-2
COOR	+20	+17	+3	+2	-2
COCI	+33	+28		+2	
CONH ₂	+22	1.1	+2.5	tent in <u>ten</u> t dis sur s	-0.5
COR	+30	+24	+1	+1	-2
СНО	+31		0		-2
Phenyl	+23	+17	+9	+7	-2
ОН	+48	+41	+10	+8	5
OR	+58	+51	+8	+5	-4
OCOR	+51	+45	+6	+5	-3
NH ₂	+29	+24	+11	+10	-5
NH3	+26	+24	+8	+6	-5
NHR	+37	+31	+8	+6	-4
NR ₂	+42	an an <mark>-</mark> an a	+6		-3
NR3	+31	-	+5	a an	-7
NO ₂	+63	+57	+4	+4	
CN	+4	+1	+3	+3	.–3
SH	+11	+11	+12	+11	_4

EW Wahrli and T Wirthlin Interpretation of Carbon-13 NMR spectra. London:



file

¹³ C SUBSTITUENT IN	CREMENTS	FOR ALKE	NE (VINYL)	CARBONS ^{a,b}		
972 (88) - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	$\gamma - \beta - \alpha$ $\alpha' - \beta' - \gamma'$					
		α / C=				
Substituent	a d	β	r	α΄	β	r
Carbon	10.6	7.2	-1.5	7.9	-1.8	-1.5
-C ₆ H ₅	12			-1Î ^{- Bir}	iner en j	
-OR	29	2		-39	-1	
-OCOR	18	1280 - M	(	-27		
-COR	15			6		
-COOH	4			9		
-CN	-16			-1 - 1 - 15 - 15		
an englishter	1. ter (14) 2	(()) - 1			2	
-Cl	-8	0		-1	2	
-Br	-38	<b>.</b>		$\frac{1}{7}$	ant The Second Second	

^aIn the upper chains, if a group is in the  $\beta$  or  $\gamma$  position, the preceding atoms ( $\alpha$  and/or  $\beta$ ) are assumed to be carbon atoms. Add these increments to the base value of ethylene (123.3 ppm).

^bCalculate C1 as shown in the diagram. Redefine C2 as C1 when estimating values for C2.

#### Estimation of alkene shifts

Substitution parameters to be added to the shift of ethene  $\delta$ 123.3.

On the opposite end of the double bond from the resonating carbon.

 $\alpha'$  (-7.9);  $\beta'$  (-1.8); and  $\gamma'$  (-1.5)

• For the same end of the double bond from the resonating carbon.

 $\alpha$  (10.6);  $\beta$  (7.2); and  $\gamma$  (-1.5)

Z(cis) correction - 1.1



α

C = C

Y

C

Substituent Y	α (ipso)	o (ortho)	m ( <i>meta</i> )	p (para)
-CH ₃	9.3	0.7	-0.1	-2.9
-CH ₂ CH ₃	11.7	-0.5	0	-2.6
$-CH(CH_2)_2$	20.1	-2.0	-0.3	-2.5
-C(CH ₃ ) ₃	18.6	-3.4	-0.4	-3.1
-CH=CH ₂	9.1	-2.4	0.2	-0.5
−C≡CH	-6.2	3.6	-0.4	-0.3
-C ₆ H ₅	8.1	-1.1	-0.5	-1.1
-СНО	8.2	1.2	0.6	5.8
-COCH ₃	8.9	-0.1	-0.1	4.4
-COC ₆ H ₅	9.1	1.5	-0.2	3.8
-СООН	2.1	1.6	-0.1	5.2
-COOCH ₃	2.0	1.2	-0.1	4.3
-CN	-16.0	3.6	0.6	4.3
-NH ₂	18.2	-13.4	0.8	-10.0
$-N(CH_3)_2$	16.0	-15.7	0.8	-10.5
-NHCOCH ₃	9.7	-8.1	0.2	-4.4
-NO ₂	19.6	-4.9	0.9	6.0
-он	28.8	-12.7	1.6	-7.3
-OCH ₃	33.5	-14.4	1.0	-7.7
-OCOCH ₃	22.4	-7.1	-0.4	-3.2
- <b>F</b>	33.6	-13.0	1.6	-4.5
-Cl	5.3	0.4	1.4	-1.9
-Br	-5.4	3.4	2.2	-1.0
-I	-31.2	8.9	1.6	-1.1

## 130 0100-

"Add these increments to the base value for benzene-ring carbons (128.5 ppm).

I

¹³ C Atoms	Shift correction (ppm)	¹³ C Atoms	Shift correction (ppm)
1º (3º)	-1.1	3° (2°)	-3.7
1º (4º)	-3.4	3º (3º)	-9.5
2° (3°)	-2.5	4º (1º)	-1.5
2° (4°)	-7.2	4º (2º)	-8.4

